0=14t-5t^2

Simple and best practice solution for 0=14t-5t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=14t-5t^2 equation:



0=14t-5t^2
We move all terms to the left:
0-(14t-5t^2)=0
We add all the numbers together, and all the variables
-(14t-5t^2)=0
We get rid of parentheses
5t^2-14t=0
a = 5; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·5·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*5}=\frac{0}{10} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*5}=\frac{28}{10} =2+4/5 $

See similar equations:

| x-15=2(x-53) | | -2(-p-6)=8p-12 | | (x+13)+(63)+(3x)=180 | | 9+5n=34 | | 16x+6=18x | | (63)+(3x)+(x+13)=180 | | -25+v=6v-(5-8v) | | (3x)+(18x)+(5x-2)=180 | | 7x+22=x+70 | | X+41+3x+9=180 | | 68+65+x+x=180 | | 81+3x-16+22=180 | | 3x+1-6x=4x+11-9x | | 4x-0.3=0.5×-6 | | 36=18x | | 6x+3=88 | | X+41+3x+9=~×∆ | | 6(x-5)=7x+3 | | 70=7x+35 | | 8h+130=210 | | 3z-5(3z+2)=2-5(-4-z) | | -7x-37=-7-2(-2x+4) | | 2x*2-32=0 | | 35=7x+35 | | 49=10+f/5 | | X-12+x=84 | | 51/2-1u=9/4 | | 12=h/9 | | -7x-37=-7-2(-2x+4 | | 2+6x=98 | | 2x*2+4x-16=0 | | .2y-8+4y=2 |

Equations solver categories